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Feature extraction plays an important role in the sentiment analysis process, especially of text data. The Naive Bayes 

Classifier performs well on low feature dimensions. However, the accuracy provided is not optimal. To acquire  optimal 

machine learning model,  information gain method, evolutionary algorithm, and swarm intelligent algorithm are applied. 

The objective of this study is to determine the performance of the Particle Swarm Optimization (PSO) to optimize the 

Naive Bayes Classifier. Vectorization of words is carried out using TF-IDF. In order to produce high PSO performance, 

the PSO-NBC model is tested with several parameters, namely the number of particles (k = 3), setting of the number of 

iterations and inertia weight, individual intelligence coefficient (c1 = 1), and social intelligence coefficient (c2 = 2). Inert 

weight is calculated using the formulation (w = 0.5+ Rand ([- 1,1])). In conclusion, PSO is able to solve the problem 

space of text-based sentiment analysis. PSO is able to optimize the accuracy of Naive Bayes at a value of 89% to 91.76%. 

PSO performance is determined by the parameters used, especially the number of particles, the number of iterations, and 

the weight of inertia. A large number of particles accompanied by an increase in inertia weight can increase accuracy. 

The number of particles 20-30 has reached the optimal accuracy. 
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INTRODUCTION 
 

Customers who booked hotels online will 

usually post their reviews after their stay. Online 

reviews in the forms of ratings and comments can 

influence potential customers. Customer experience 

is an important factor because it has an impact on 

hotel reputation and to increase hotel room bookings 

(Xie & Zhang, 2014). Analysis of consumer 

experiences can be obtained by focusing on textual 

reviews in the form of comments on social media 

(Xiang et al., 2015). Sentiment analysis is a 

methodology to determine consumer polarity 

(sentiment). In big data processing, machine learning 

works better for sentiment analysis but creating 

accurate machine learning models is not easy. 

NBC is proven to be able to produce good 

model accuracy even with a small amount of data 

(Feng et al., 2015; and Rasjid & Setiawan, 2017). 

NBC considers each word or token in the document 

(comments) to be mutually independent. This differs 

from the lexicon-based classification model in 

general. Accuracy performance can still be optimized 

with various optimization techniques. There are many 

ways to optimize machine learning models, including 

techniques, evolutionary machine learning 

algorithms, and intelligent swarms (Rizaldy & 

Santoso, 2017; Pramono et al., 2019; and Osman & 

Zarog, 2019). 

Previous research on the analysis of customer 

sentiment in Purwokerto hotels by Paramitha (2020) 

employed two-step feature selection (Elin Hanjani 

Pramitha, 2020). In this study, feature selection in the 

Naive Bayes Classifier (NBC) model using TF-IDF is 

then reduced using PSO. In this study, the accuracy 

of NBC is optimized using Particle swarm 

optimization (PSO). In several text analysis studies, 

PSO was able to optimize accuracy (Pandhu Wijaya 

& Agus Santoso, 2018; and Wardhani et al., 2018). 

PSO was first discovered by Kennedy and 

Eberhart as a stochastic probability problem 

optimization technique, which takes advantage of 

herd behavior (Eberhart & Kennedy, 1995). PSO has 

advantages, among others, a simple algorithm, able to 

solve complex problems, and continuously produce 

better solutions, while a herd algorithm such as 

Genetics requires complex and expensive 

computations (Hu et al., 2003). The most optimal 

final solution depends on the objective function 

implemented. This objective function can be changed 

according to certain methods. In this study, the 

objective function is obtained by multiplying the 

NBC accuracy for each iteration by an alpha value of 

0.9. To obtain the optimal solution, PSO uses several 

parameters, including the number of particles 

representing the swarm (a group of data), the position 

vector of each particle in the swarm, the direction of 

motion of the particles or velocity, the learning rate, 

and the learning rate inertia. Each particle will 

produce a solution and reach convergent under the 

specified conditions. According to Ratnaweera, 

convergence et al is influenced by the rate of learning 

and the inertia weight (Yan et al., 2018). The inertia 

of the rate and the speed of the learning rate can be 

determined by a constant value or an adaptation value 

based on a certain function determined by the 

programmer.  

Based on the review of previous studies, this 

study optimizes NBC using PSO with random 

function inertia weigh parameter. The contribution of 

this study is to find the most optimal NBC accuracy 

using the parameters of constant learning rate, 

learning rate inertia with dynamic functions, and 

changes in the number of particles. A major 

contribution is in finding the optimal number of 

particles by applying dynamic inertia weights. 
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METHODOLOGY 

1. Pre-modeling Stage  

This stage of study begins with data collection 

followed by labeling, data selection, and data 

balancing to obtain ready-to-use dataset. It is 

followed by building a sentiment analysis model. A 

sentiment model is built using a combination of PSO 

and Naive Bayes. 

 

Dataset 

The study uses data from previous study on the 

analysis of customer sentiment in Purwokerto hotels 

(Elin Hanjani Pramitha, 2020). In previous study, 

data was collected using web scraping techniques. 

Scraped data are reviews of customers or hotel users 

from the agoda.com and tripadvisor sites, especially 

for hotels in the Purwokerto area of Banyumas 

Regency. The research data consists of customer 

reviews of Purwokerto hotels from the agoda.com 

site, with 900 reviews of 33 hotels, and data on 

customer reviews of Purwokerto hotels on 

tripadvisor.co.id, with 1,166 reviews of 39 hotels. 

Data Labeling  

Data labeling is done automatically and 

computerized. The hotel customer review data from 

agoda.com include reviews and service rating of 0 to 

10, which is given by consumers. Data labeling is 

carried out based on the data review score. If the score 

given by customers is 6.0 or more, the review is 

labeled positive or 1. If less than 6.0, it is labeled 

negative or 0. 

Meanwhile, hotel customer comments from 

tripadvisor.com, customers also provide service 

ratings which range from 10 (Very Bad) to 50 

(Excellent). Data from Tripadvisor.com is labeled by 

sorting positive reviews (1) based on review scores of 

40 and 50, while negative reviews (0) are based on 

review scores of 10, 20, and 30.The labeling results is 

presented in Table 1. 

Table 1. Labeled data  

 Data source Positive (1) Negative(0) 

agoda.com 732 168 

tripadvisor.co.id 810 269 

Total  1,542 437 

 

Data Selection  

Information-rich comments are generally 

written in a long narrative. Only a few comments 

were written in short characters. Short comments do 

not evoke sentiment. The data selection was made to 

discard reviews with characters below 10. 

Examples of comments with less than 10 characters. 

• OK 

• Mantappp (great) 

• Libur asik (nice vacation) 

Data Balancing 

Before commencing the vectorization and 

classification stage, it is better to review the balance 

of dataset. Balanced data is where the number of 

datasets labeled positive are the same as the number 

of data labeled negative. Imbalanced data can affect 

the accuracy of classification from bias, overfitting, 

or underfitting even though the accuracy value 

obtained is high. Methods to manage imbalanced data 

include increasing the amount of sample data 

(oversampling), reducing the amount of sample data 

(undersampling) or a combination of both. Cahyana, 

Khomsah, and Aribowo (2019) said that 

oversampling is good for imbalanced data, but 

sensibility and natural conditions of the data must be 

considered. To improve accuracy, in addition to 

oversampling, the undersampling method can be 

applied (Cahyana et al., 2019). In this study, the 

undersampling method is used because the number of 

data labeled positive is three times the number of data 

labeled negative. Datasets labeled negative are 

reduced so that they are balanced by the amount of 

data labeled negative. 
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2. PSO dan  Naive Bayes modeling stage 

 
Figure  1. Proposed Model  

Text Pre-processing  

The pre-processing stages in sentiment 

analysis are generally the same. Before review data is 

converted into numerical vectors, the text-

preprocessing stages are carried out, which include 

case folding, tokenization, remove stopword, and 

stemming. 

1. Case folding is the process of uniformity of 

character into lowercase letters. This process is 

necessary because the same word with different 

fonts will be considered two different features, this 

can enlarge the dimensions of the token produced 

but does not give the meaning of the feature 

variation. Example case folding include ‘Liburan 

Asik (Nice Vacation) is changed to ' liburan asik 

(nice vacation)'. 

2. Tokenizing is the process of breaking down a 

sentence (comment) into its constituent single 

words. For example, ‘mantapp banget liburannya 

(it was a really great holiday)” will generate three 

tokens namely ‘mantapp I (great), ‘banget 

(really)’, ‘liburannya (the vacation)’. 

3. Stopword removal functions to remove formal 

words without sentiment. In this study, the 

stopword removal process uses a built-in function. 

Every comment in the dataset will be checked 

automatically (computationally) based on the 

stopword list that has been compiled (Khomsah & 

Aribowo, 2020).  Examples of stopwords include 

conjunctions such as 'dan (and) ', 'ke (to)', ‘dari 

(from)', 'pada (in, on, at)', adverbs of time, adverbs 

of place, and personal pronouns. For example, the 

comment ‘aku menginap pada akhir tahun (I 

stayed on yearend’, after being subject to a 

stopword removal, the order of comments 

changes, ‘menginap akhir tahun (stayed 

yearend)’. 

4. Slangword conversion is the process of converting 

slang words into standard words. The slangword 

conversion dictionary uses previous research 

(Khomsah & Aribowo, 2020). For example, the 

word 'wuenak  (slang for delicious)' will be 

converted to ‘enak (delicious)'. 

5. Stemming adalah proses mengubah token (kata) 

menjadi bentuk dasarnya. Misalnya, ‘menginap’ 

menghasilkan stem ‘ inap’. Stemming is the 

process of changing a token (word) into its basic 

form. For example, ‘menginap (stayed)’ produces 

the stem ‘inap (stay)’. 

 

Word Vectorizer 

Vectorization aims to convert each token in the 

dataset into a vector value. The method employed is 

TF-IDF (Salton & Buckley, 1988). TF-IDF is in the 

form of a word weight value. TF-IDF represents the 

distribution of each word in a document across the 

entire document or corpus. The first step is to 

calculate the TF value with equation (1), calculate the 

IDF value with equation (2), and calculate the TF-IDF 

value with equation (3). 

𝑇𝐹 (𝑡, 𝑑) = 0,5 + 0,5 
𝑓 (𝑡,𝑑)

max{𝑓(𝑤,𝑑):𝑤 ∈𝑑}
  (1) 

𝐼𝐷𝐹 (𝑡, 𝑑) = 𝑙𝑜𝑔
𝑁

𝐷𝑓(𝑡,𝑑)
    (2) 

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) 𝑥 𝑖𝑑𝑓(𝑡, 𝐷)  (3) 

 

The machine learning model for classifying 

hotel customer review sentiments in this study is the 

Naive Bayes Classifier (NBC). Although the previous 
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study also used NBC as a classifier, it differs from the 

classifier model in this study. This study optimizes 

the accuracy of NBC using Particle Swarm 

Optimization with different parameters. 

 

Building Model 

1. Naive Bayes 

   The Naive bayes model used is the 

Multinomial Naive Bayes (MNB) type, which is the 

Naive Bayes type often used for text analysis where 

data is represented in the form of a word frequency 

vector, TF-IDF weight (Naive Bayes, n.d.). 

Distribution is notated with vectors 

 and class y , where  is the-

i-th feature probability   on class y.   

Parameter is calculated using equation (4) 

                                           (4) 

 

where  is the number of 

occurences of feature i  in class y  and dataset T, while 

 is the total number of features 

for class y.  

 

2. Particle Swarm Optimization 

  

Particle Swarm Optimization (PSO) is 

motivated by how birds foraging for food in an area 

where there is only one source of food. Each bird does 

not have  the information of the right food source. 

However, every time (iteration) they know the 

distance of the food source from their places 

(position). PSO adopts the bird's behavior in looking 

for food, namely by following the closest bird. A bird 

states a problem solution in a problem space 

(Suyanto; et al., 2020). 

In general, the term solution is called a particle. 

Each particle has a fitness value, and it is always 

evaluated every time (iteration) by the fitness 

function. Each particle has a speed and direction of 

flight. The particles (selected solutions) will move 

(fly) following the optimum particles at that time 

(close to the source of the solution). 

The relationship between particles in the 

problem space is identified using the neighboring ring 

or star topology. The neighboring size of the ring 

topology is equal to three, but sometimes it can be 

changed to 2,3,4,5 and so on, depending on the width 

of the problem space dimensions. Star topology has a 

larger neighbor size because a particle can connect to 

all particles globally. A particle in PSO consists of 

three vectors, namely X, P, V and two fitness values, 

namely fitness X and fitness P. 

• X is the current position of the particle in the 

search space. 

• P is the position of the best solution found for 

the particle and, 

• V is the direction of flight of the particle or 

velocity. 

• X-fitness is the vector fitness value X and, 

• P-fitness is the vector fitness value P. 

To which direction do the particles fly? After a 

particle obtains a new Xi, the particle will evaluate its 

new position. If X-fitness is better than P-fitness then 

Pi = Xi and P-fitness = X-fitness. This study uses a 

star topology so as to update the velocity (v) using 

equation (5) 

𝑣𝑖𝑑  =  𝑣𝑖𝑑 +  𝑐1𝑟[𝑃𝑏𝑒𝑠𝑡,𝑖𝑑 − 𝑥𝑖𝑑] + 𝑐2𝑟 [𝐺𝑏𝑒𝑠𝑡,𝑖𝑑 −

 𝑥𝑖𝑑]      (5) 

 

Index i is the i-th particle, and d is the d dimension. 

The Gbest index is used to designate the particle with 

the best fitness in the neighboring topology used. 

Meanwhile, the Pbest index indicates the best fitness 
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that a particle has achieved so far. Index c1 refers to 

the rate of learning components of individual 

intelligence (cognition), while c2 is the rate of 

learning components of the relationship between 

individuals (social), and r is a random number in the 

interval [0,1]. The rates of c1 and c2 can be fixed at a 

constant value. This study uses the learning rate c1 as 

individual intelligence (cognition). How do particles 

fly ? Add v-vector to x-vector to obtain a new v-

vector, written mathematically as equation (6). 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑    (6) 

 𝑤 = 0.5 +  
𝑟𝑎𝑛𝑑(−1,1)

2
                                         (7) 

 

The PSO algorithm begins by generating a random set 

of particles. This particle size is taken from the 

dataset. The small particle size will speed up the 

process of finding a solution. According to Carlisle 

and Dozier (2001), for a small problem space, optimal 

PSO performance can be achieved using 10 to 50 

particles. As for large problem spaces, 100 particles 

can be used. However, a small number of particles is 

often trapped in a local solution, while a large number 

of particles produces a global solution but the 

processing time is long (Suyanto; et al., 2020). 

 

The algorithm for this research is binary PSO which 

is written in Python. Important functions in PSO are 

shown in Figure 2, Figure 3 and Figure 4. 

 

Figure 2. Objective Function Algorithm  

 

In Figure 2, the accuracy of each particle is calculated 

using Naive Bayes and stored in P. The objective 

function is to calculate the optimal solution for each 

particle. The value of the objective function j will 

continue to change until it reaches a convergent value, 

that is, when the j value of the particle in the next 

iteration (generation) does not change (constant). If 

the convergent value is not exceeded, but the 

specified iteration is complete, the optimization 

process will stop. 

 

#Generating Particles. 
def f_per_particle(m, alpha): 
    numpy.ndarray 
 #Hitung fungsi objektif  

    total_features = X.shape[1] 
 
 # Get the subset of the features from the binary 
mask 

    if np.count_nonzero(m) == 0: 
        X_subset = preprocessing.scale(X) 
    else: 
        X_subset = preprocessing.scale(X[:,m==1]) 
 
 # Perform classification and store performance in P     

    Feature_scaler = 
MinMaxScaler(feature_range=(0.01, 0.99)) 
    X_subset = 
Feature_scaler.fit_transform(np.array(X_subset)) 
    mnb.fit(X_subset, y) 
    P = (mnb.predict(X_subset) == y).mean() 
    particleScore.append(P) 
    particleSize.append(X_subset.shape[1]) 
     
 # Objective Function  

    j = (alpha * (1.0 - P) 
        + (1.0 - alpha) * (1 - (X_subset.shape[1] / 
total_features))) 
    return j 
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Figure 3.  Particle Generating Function  

 

 
Figure  4. Main Function 

Model Evaluation  

The accuracy of the Naive Bayes classification is 

viewed from data comparison predicted correctly by 

the MNB to the overall data in particles (Figure 2). 

Meanwhile, the optimized performance of Naive 

Bayes is shown by the variable j. The accuracy of the 

Naive Bayes Classifier which is optimized by PSO is 

indicated by the final value of the objective function. 

RESULTS AND DISCUSSION 

The analysis sentiment classification model 

used is the Multinomial Naive Bayes Classifier 

(NBC) algorithm. For the first step, each token (term) 

is converted into a numeric vector using TF-IDF. 

From the TF-IDF calculation, the dimensions are 

2,994 features. After obtaining the features with TF-

ID, the classification process is continued with 

Multinomial NBC. Each NBC classification result is 

optimized with Particle Swarm Optimization (PSO). 

The PSO parameters used in the experiment are 

shown in Table 2. 

 

Table 2 Experiment Parameter Setting  

Parameter Value  

c1 = individual intelligence 

learning rate 
1 

c2 = social intelligence learning 

rate 
2 

w = inertia weight equation (7) 

k = number of neighbors 3 

p = distance calculation option 2 (Euclidean) 

number of particles 
10; 20; 30; 

40; 50 

number of iterations 100 dan 500 

 

The components c1 and c2 are given constant 

values. Small constant value of under one will speed 

up the rate but sometimes decrease accuracy. The 

small number of k is expected to produce a good 

neighborhood relationship. Large amounts of k will 

usually slow down the process. The number of 

particles was tested using 10 to 50 particles, and each 

with 100 and 500 iterations. If 10 particles are 

generated, there will be 10 generations, namely P1, 

P2, P3, ..., P10. NBC make 10 times classification, 

then average the accuracy. One P loop is called a 

generation. 

To prove that the PSO is working well for 

NBC, two experiments are carried out. First, the NBC 

model is built with the TF-IDF feature selection. The 

# Function for generating a bunch of particles 
in each iteration 
def f(x, alpha=0.88): 
    x: numpy.ndarray of shape (n_particles, 
dimensions) 
    n_particles = x.shape[0] 
    j = [f_per_particle(x[i], alpha) for i in 
range(n_particles)] 
    return np.array(j) 
#m is array (particle dimension). 
#alpha is constant weight for trade-off classifier 
performance and number of features.  

#Main Function PSO  
import matplotlib.pyplot as plt 
import random 
w=0.5+random.uniform(-1,1)/2 
jumpartikel=10 
iters=100 
 
 # Initial parameters PSO 
options = {'c1': , 'c2': , 'w':, 'k':, 'p':}  
#c1 = individual intelligence learning rate 
#c2 = Social intelligence learning rate 
#w = inertia weight 
#k = number of neighbors 
#p = distance calculation (2=euclidean) 
 
particleScore = list() 
particleSize = list() 
    
# sepecify the dimensions of features ( features 
of word that produced by stemming) 
 
dimensions = X.shape[1]  
 
# Create Object PSO named optimizer 
 
optimizer = 
ps.discrete.BinaryPSO(n_particles=jumpartikel, 
dimensions=dimensions, options=options) 
 
 # Performance  optimizer 
cost, pos = optimizer.optimize(f, iters=iters) 
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second model uses NBC in combination with PSO. In 

the second model, the NBC method works on the 

particles in the PSO. In the first model experiment, all 

features and comment data are used. Seventy percent 

(70%) serve as training data to build models and thirty 

percent (30%) becomes testing data. The accuracy of 

the PSO + NBC model is shown in Table 3. 

 
Table 3 NBC +TF-IDF model performance 

Model Accuracy 

NBC+ TF-IDF 76% 

 

In the NBC optimization model, the experiment is 

repeated 10 times (10 variations of particles). The 

results for each particle and iteration are shown in 

Table 4. 

Table 4 PSO-NBC Model Performance 

Number 

of 

iterations 

Number 

of 

particles 

Accuracy 

PSO-NBC 

(%)  

Inertia 

weight(w) 

100 10 89.93 0.399 

20 90.38 0.345 

30 90.73  0.414 

40 90.80 0.752 

50 91.76 0.980 

500 10 90.50 0.679 

20 90.50 0.217 

30 91.18 0.535 

40 90.50 0.130 

50 90.80 0.396 

  

In an experiment with 100 iterations (Table 

4), the accuracy in the initial generation of particle 10, 

the accuracy has reached 89.93%. This figure actually 

exceeds the accuracy of NBC without PSO. With the 

increase in the number of particles from 20, 30, to 40, 

convergent accuracy is achieved at the value of 90%. 

The increase in accuracy occurs when 50 particles are 

used. In the inertia weight column, it can be seen that 

the greater the weight value, the greater the accuracy. 

Meanwhile, the experiment with 500 

iterations yields different result. Early generation 

accuracy, with 10 convergence particles is at 90.50%. 

However, in contrast to the first experiment (with 100 

iterations), the increase in the number of particles is 

not accompanied by an increase in accuracy. Inertia 

weight is reduced when the number of iterations is 

500. With 500 iterations, the higher the number of 

particles, the smaller the weight change. However, 

when using 30 particles, it appears that the accuracy 

increases with inertia weight better than that with 20 

particles. This may happen because of the way PSO 

generates particles randomly. The random generation 

of particles does not guarantee that the selected data 

is good to support optimal accuracy. 

The PSO performance rates for NBC 

optimization are shown in Figure 5, Figure 6, Figure 

7, Figure 8. The red line in Figure 5,6,7,8 shows the 

peak mean accuracy of all particles in each 

generation. Figure 5 shows that the use of 10 particles 

will achieve the first accuracy at about the 50th 

iteration but then decrease and reach the highest 

average accuracy at the 99th iteration. 
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Figure  5.  Accuracy Rate With 10 Particles and 100 Iterations  

 

    

 

 
Figure  6.  Accuracy Rate With 50 Particles and 100 Iterations  

 

Figure 6 shows the use of 50 particles under 

the similar conditions as that with 10 particles. In 

Figure 5 and Figure 6, the convergence of accuracy 

did not occur consistently despite increase of 

accuracy. 
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Figure  7. Accuracy Rate With 10 Particles and 500 Iterations 

 

 
Figure  8. Accuracy Rate With 50 Particles and 500 Iterations 

 

 

Figure 6 and Figure 7 show the rate of change in the 

accuracy of each particle. In the early days of flying 

particles (the first generation), accuracy was seen at 

90%. Although the number of particles increases, 

accuracy does not increase. Usually, a high number 

of iterations requires high computation time. 

However, in this study, the computation time is not 

calculated because the computation time is very 

relative, depending on the hardware used. 
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CONCLUSIONS  
1. Conclusion 

From the experiments and datasets carried out 

and used in this study, it is proven that Particle Swarm 

Optimization has been successful in optimizing the 

Naive Bayes Classifier, achieving the smallest 

accuracy of 89.93% and the maximum accuracy of 

91.76%. 

Text analysis yields a large feature dimension. The 

increase in accuracy of Naive Bayes from 76% to 

89.93-91.76% indicates that PSO can solve the 

problem space of text analysis with certain 

parameters. The parameter setting significantly 

affects the convergence rate of accuracy. The use of a 

smaller number of particles can achieve optimal 

accuracy (89.93%). Larger number of particles can 

generate more optimal accuracy, with the highest at 

91.76%. However, the combination of the number of 

iterations and the number of particles is equally large, 

unable to increase accuracy. The right inertia weight 

can improve accuracy. The number of particles 20-30 

has reached optimal accuracy. 

2. Recommendation 

It is necessary that PSO performance for 

feature optimization in sentiment analysis be tested 

on various types of datasets, across domains, and 

various parameters. In the sentiment analysis problem 

space, the selection of the right number of particles, 

the number of iterations, and the value of the inertia 

weight component still require further investigation. 
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