
157

JPPI Vol 10 No 2 (2020) 157 - 168

Jurnal Penelitian Pos dan Informatika
32a/E/KPT/2017

e-ISSN 2476-9266

p-ISSN: 2088-9402

Doi:10.17933/jppi.2020.100206

Naive Bayes Classifier Optimization on Sentiment Analysis

of Hotel Reviews

Optimasi Naive Bayes Classifier Pada Sentiment Analysis Komentar

Pelanggan Hotel

Siti Khomsah

Abstract

Keywords: Sentiment Analysis, Optimization, Features-selection, Naive Bayes Classifier, Particle Swarm

Optimization.

Data Science , Institut Teknologi Telkom Purwokerto;

 Jl. D I Panjaitan No.128 Purwokerto, Indonesia 53147

siti@ittelkom-pwt.ac.id

Received: 13 November 2020 ; Received in revised from: 14 December 2020; Accepted: 15 December 2020

Feature extraction plays an important role in the sentiment analysis process, especially of text data. The Naive Bayes

Classifier performs well on low feature dimensions. However, the accuracy provided is not optimal. To acquire optimal

machine learning model, information gain method, evolutionary algorithm, and swarm intelligent algorithm are applied.

The objective of this study is to determine the performance of the Particle Swarm Optimization (PSO) to optimize the

Naive Bayes Classifier. Vectorization of words is carried out using TF-IDF. In order to produce high PSO performance,

the PSO-NBC model is tested with several parameters, namely the number of particles (k = 3), setting of the number of

iterations and inertia weight, individual intelligence coefficient (c1 = 1), and social intelligence coefficient (c2 = 2). Inert

weight is calculated using the formulation (w = 0.5+ Rand ([- 1,1])). In conclusion, PSO is able to solve the problem

space of text-based sentiment analysis. PSO is able to optimize the accuracy of Naive Bayes at a value of 89% to 91.76%.

PSO performance is determined by the parameters used, especially the number of particles, the number of iterations, and

the weight of inertia. A large number of particles accompanied by an increase in inertia weight can increase accuracy.

The number of particles 20-30 has reached the optimal accuracy.

http://dx.doi.org/10.17933/jppi.2019.090102
http://dx.doi.org/10.17933/jppi.2019.090102
http://dx.doi.org/10.17933/jppi.2019.090102
mailto:siti@ittelkom-pwt.ac.id1

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

158

INTRODUCTION

Customers who booked hotels online will

usually post their reviews after their stay. Online

reviews in the forms of ratings and comments can

influence potential customers. Customer experience

is an important factor because it has an impact on

hotel reputation and to increase hotel room bookings

(Xie & Zhang, 2014). Analysis of consumer

experiences can be obtained by focusing on textual

reviews in the form of comments on social media

(Xiang et al., 2015). Sentiment analysis is a

methodology to determine consumer polarity

(sentiment). In big data processing, machine learning

works better for sentiment analysis but creating

accurate machine learning models is not easy.

NBC is proven to be able to produce good

model accuracy even with a small amount of data

(Feng et al., 2015; and Rasjid & Setiawan, 2017).

NBC considers each word or token in the document

(comments) to be mutually independent. This differs

from the lexicon-based classification model in

general. Accuracy performance can still be optimized

with various optimization techniques. There are many

ways to optimize machine learning models, including

techniques, evolutionary machine learning

algorithms, and intelligent swarms (Rizaldy &

Santoso, 2017; Pramono et al., 2019; and Osman &

Zarog, 2019).

Previous research on the analysis of customer

sentiment in Purwokerto hotels by Paramitha (2020)

employed two-step feature selection (Elin Hanjani

Pramitha, 2020). In this study, feature selection in the

Naive Bayes Classifier (NBC) model using TF-IDF is

then reduced using PSO. In this study, the accuracy

of NBC is optimized using Particle swarm

optimization (PSO). In several text analysis studies,

PSO was able to optimize accuracy (Pandhu Wijaya

& Agus Santoso, 2018; and Wardhani et al., 2018).

PSO was first discovered by Kennedy and

Eberhart as a stochastic probability problem

optimization technique, which takes advantage of

herd behavior (Eberhart & Kennedy, 1995). PSO has

advantages, among others, a simple algorithm, able to

solve complex problems, and continuously produce

better solutions, while a herd algorithm such as

Genetics requires complex and expensive

computations (Hu et al., 2003). The most optimal

final solution depends on the objective function

implemented. This objective function can be changed

according to certain methods. In this study, the

objective function is obtained by multiplying the

NBC accuracy for each iteration by an alpha value of

0.9. To obtain the optimal solution, PSO uses several

parameters, including the number of particles

representing the swarm (a group of data), the position

vector of each particle in the swarm, the direction of

motion of the particles or velocity, the learning rate,

and the learning rate inertia. Each particle will

produce a solution and reach convergent under the

specified conditions. According to Ratnaweera,

convergence et al is influenced by the rate of learning

and the inertia weight (Yan et al., 2018). The inertia

of the rate and the speed of the learning rate can be

determined by a constant value or an adaptation value

based on a certain function determined by the

programmer.

Based on the review of previous studies, this

study optimizes NBC using PSO with random

function inertia weigh parameter. The contribution of

this study is to find the most optimal NBC accuracy

using the parameters of constant learning rate,

learning rate inertia with dynamic functions, and

changes in the number of particles. A major

contribution is in finding the optimal number of

particles by applying dynamic inertia weights.

Optimization Naive Bayes Classifier On Sentiment Analysis Of Hotel Reviews (Siti Khomsah)

159

METHODOLOGY

1. Pre-modeling Stage

This stage of study begins with data collection

followed by labeling, data selection, and data

balancing to obtain ready-to-use dataset. It is

followed by building a sentiment analysis model. A

sentiment model is built using a combination of PSO

and Naive Bayes.

Dataset

The study uses data from previous study on the

analysis of customer sentiment in Purwokerto hotels

(Elin Hanjani Pramitha, 2020). In previous study,

data was collected using web scraping techniques.

Scraped data are reviews of customers or hotel users

from the agoda.com and tripadvisor sites, especially

for hotels in the Purwokerto area of Banyumas

Regency. The research data consists of customer

reviews of Purwokerto hotels from the agoda.com

site, with 900 reviews of 33 hotels, and data on

customer reviews of Purwokerto hotels on

tripadvisor.co.id, with 1,166 reviews of 39 hotels.

Data Labeling

Data labeling is done automatically and

computerized. The hotel customer review data from

agoda.com include reviews and service rating of 0 to

10, which is given by consumers. Data labeling is

carried out based on the data review score. If the score

given by customers is 6.0 or more, the review is

labeled positive or 1. If less than 6.0, it is labeled

negative or 0.

Meanwhile, hotel customer comments from

tripadvisor.com, customers also provide service

ratings which range from 10 (Very Bad) to 50

(Excellent). Data from Tripadvisor.com is labeled by

sorting positive reviews (1) based on review scores of

40 and 50, while negative reviews (0) are based on

review scores of 10, 20, and 30.The labeling results is

presented in Table 1.

Table 1. Labeled data

 Data source Positive (1) Negative(0)

agoda.com 732 168

tripadvisor.co.id 810 269

Total 1,542 437

Data Selection

Information-rich comments are generally

written in a long narrative. Only a few comments

were written in short characters. Short comments do

not evoke sentiment. The data selection was made to

discard reviews with characters below 10.

Examples of comments with less than 10 characters.

• OK

• Mantappp (great)

• Libur asik (nice vacation)

Data Balancing

Before commencing the vectorization and

classification stage, it is better to review the balance

of dataset. Balanced data is where the number of

datasets labeled positive are the same as the number

of data labeled negative. Imbalanced data can affect

the accuracy of classification from bias, overfitting,

or underfitting even though the accuracy value

obtained is high. Methods to manage imbalanced data

include increasing the amount of sample data

(oversampling), reducing the amount of sample data

(undersampling) or a combination of both. Cahyana,

Khomsah, and Aribowo (2019) said that

oversampling is good for imbalanced data, but

sensibility and natural conditions of the data must be

considered. To improve accuracy, in addition to

oversampling, the undersampling method can be

applied (Cahyana et al., 2019). In this study, the

undersampling method is used because the number of

data labeled positive is three times the number of data

labeled negative. Datasets labeled negative are

reduced so that they are balanced by the amount of

data labeled negative.

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

160

2. PSO dan Naive Bayes modeling stage

Figure 1. Proposed Model

Text Pre-processing

The pre-processing stages in sentiment

analysis are generally the same. Before review data is

converted into numerical vectors, the text-

preprocessing stages are carried out, which include

case folding, tokenization, remove stopword, and

stemming.

1. Case folding is the process of uniformity of

character into lowercase letters. This process is

necessary because the same word with different

fonts will be considered two different features, this

can enlarge the dimensions of the token produced

but does not give the meaning of the feature

variation. Example case folding include ‘Liburan

Asik (Nice Vacation) is changed to ' liburan asik

(nice vacation)'.

2. Tokenizing is the process of breaking down a

sentence (comment) into its constituent single

words. For example, ‘mantapp banget liburannya

(it was a really great holiday)” will generate three

tokens namely ‘mantapp I (great), ‘banget

(really)’, ‘liburannya (the vacation)’.

3. Stopword removal functions to remove formal

words without sentiment. In this study, the

stopword removal process uses a built-in function.

Every comment in the dataset will be checked

automatically (computationally) based on the

stopword list that has been compiled (Khomsah &

Aribowo, 2020). Examples of stopwords include

conjunctions such as 'dan (and) ', 'ke (to)', ‘dari

(from)', 'pada (in, on, at)', adverbs of time, adverbs

of place, and personal pronouns. For example, the

comment ‘aku menginap pada akhir tahun (I

stayed on yearend’, after being subject to a

stopword removal, the order of comments

changes, ‘menginap akhir tahun (stayed

yearend)’.

4. Slangword conversion is the process of converting

slang words into standard words. The slangword

conversion dictionary uses previous research

(Khomsah & Aribowo, 2020). For example, the

word 'wuenak (slang for delicious)' will be

converted to ‘enak (delicious)'.

5. Stemming adalah proses mengubah token (kata)

menjadi bentuk dasarnya. Misalnya, ‘menginap’

menghasilkan stem ‘ inap’. Stemming is the

process of changing a token (word) into its basic

form. For example, ‘menginap (stayed)’ produces

the stem ‘inap (stay)’.

Word Vectorizer

Vectorization aims to convert each token in the

dataset into a vector value. The method employed is

TF-IDF (Salton & Buckley, 1988). TF-IDF is in the

form of a word weight value. TF-IDF represents the

distribution of each word in a document across the

entire document or corpus. The first step is to

calculate the TF value with equation (1), calculate the

IDF value with equation (2), and calculate the TF-IDF

value with equation (3).

𝑇𝐹 (𝑡, 𝑑) = 0,5 + 0,5
𝑓 (𝑡,𝑑)

max{𝑓(𝑤,𝑑):𝑤 ∈𝑑}
 (1)

𝐼𝐷𝐹 (𝑡, 𝑑) = 𝑙𝑜𝑔
𝑁

𝐷𝑓(𝑡,𝑑)
 (2)

𝑇𝐹 − 𝐼𝐷𝐹 (𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑) 𝑥 𝑖𝑑𝑓(𝑡, 𝐷) (3)

The machine learning model for classifying

hotel customer review sentiments in this study is the

Naive Bayes Classifier (NBC). Although the previous

Optimization Naive Bayes Classifier On Sentiment Analysis Of Hotel Reviews (Siti Khomsah)

161

study also used NBC as a classifier, it differs from the

classifier model in this study. This study optimizes

the accuracy of NBC using Particle Swarm

Optimization with different parameters.

Building Model

1. Naive Bayes

 The Naive bayes model used is the

Multinomial Naive Bayes (MNB) type, which is the

Naive Bayes type often used for text analysis where

data is represented in the form of a word frequency

vector, TF-IDF weight (Naive Bayes, n.d.).

Distribution is notated with vectors

 and class y , where is the-

i-th feature probability on class y.

Parameter is calculated using equation (4)

 (4)

where is the number of

occurences of feature i in class y and dataset T, while

 is the total number of features

for class y.

2. Particle Swarm Optimization

Particle Swarm Optimization (PSO) is

motivated by how birds foraging for food in an area

where there is only one source of food. Each bird does

not have the information of the right food source.

However, every time (iteration) they know the

distance of the food source from their places

(position). PSO adopts the bird's behavior in looking

for food, namely by following the closest bird. A bird

states a problem solution in a problem space

(Suyanto; et al., 2020).

In general, the term solution is called a particle.

Each particle has a fitness value, and it is always

evaluated every time (iteration) by the fitness

function. Each particle has a speed and direction of

flight. The particles (selected solutions) will move

(fly) following the optimum particles at that time

(close to the source of the solution).

The relationship between particles in the

problem space is identified using the neighboring ring

or star topology. The neighboring size of the ring

topology is equal to three, but sometimes it can be

changed to 2,3,4,5 and so on, depending on the width

of the problem space dimensions. Star topology has a

larger neighbor size because a particle can connect to

all particles globally. A particle in PSO consists of

three vectors, namely X, P, V and two fitness values,

namely fitness X and fitness P.

• X is the current position of the particle in the

search space.

• P is the position of the best solution found for

the particle and,

• V is the direction of flight of the particle or

velocity.

• X-fitness is the vector fitness value X and,

• P-fitness is the vector fitness value P.

To which direction do the particles fly? After a

particle obtains a new Xi, the particle will evaluate its

new position. If X-fitness is better than P-fitness then

Pi = Xi and P-fitness = X-fitness. This study uses a

star topology so as to update the velocity (v) using

equation (5)

𝑣𝑖𝑑 = 𝑣𝑖𝑑 + 𝑐1𝑟[𝑃𝑏𝑒𝑠𝑡,𝑖𝑑 − 𝑥𝑖𝑑] + 𝑐2𝑟 [𝐺𝑏𝑒𝑠𝑡,𝑖𝑑 −

 𝑥𝑖𝑑] (5)

Index i is the i-th particle, and d is the d dimension.

The Gbest index is used to designate the particle with

the best fitness in the neighboring topology used.

Meanwhile, the Pbest index indicates the best fitness

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

162

that a particle has achieved so far. Index c1 refers to

the rate of learning components of individual

intelligence (cognition), while c2 is the rate of

learning components of the relationship between

individuals (social), and r is a random number in the

interval [0,1]. The rates of c1 and c2 can be fixed at a

constant value. This study uses the learning rate c1 as

individual intelligence (cognition). How do particles

fly ? Add v-vector to x-vector to obtain a new v-

vector, written mathematically as equation (6).

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑 (6)

 𝑤 = 0.5 +
𝑟𝑎𝑛𝑑(−1,1)

2
 (7)

The PSO algorithm begins by generating a random set

of particles. This particle size is taken from the

dataset. The small particle size will speed up the

process of finding a solution. According to Carlisle

and Dozier (2001), for a small problem space, optimal

PSO performance can be achieved using 10 to 50

particles. As for large problem spaces, 100 particles

can be used. However, a small number of particles is

often trapped in a local solution, while a large number

of particles produces a global solution but the

processing time is long (Suyanto; et al., 2020).

The algorithm for this research is binary PSO which

is written in Python. Important functions in PSO are

shown in Figure 2, Figure 3 and Figure 4.

Figure 2. Objective Function Algorithm

In Figure 2, the accuracy of each particle is calculated

using Naive Bayes and stored in P. The objective

function is to calculate the optimal solution for each

particle. The value of the objective function j will

continue to change until it reaches a convergent value,

that is, when the j value of the particle in the next

iteration (generation) does not change (constant). If

the convergent value is not exceeded, but the

specified iteration is complete, the optimization

process will stop.

#Generating Particles.
def f_per_particle(m, alpha):
 numpy.ndarray
 #Hitung fungsi objektif

 total_features = X.shape[1]

 # Get the subset of the features from the binary
mask

 if np.count_nonzero(m) == 0:
 X_subset = preprocessing.scale(X)
 else:
 X_subset = preprocessing.scale(X[:,m==1])

 # Perform classification and store performance in P

 Feature_scaler =
MinMaxScaler(feature_range=(0.01, 0.99))
 X_subset =
Feature_scaler.fit_transform(np.array(X_subset))
 mnb.fit(X_subset, y)
 P = (mnb.predict(X_subset) == y).mean()
 particleScore.append(P)
 particleSize.append(X_subset.shape[1])

 # Objective Function

 j = (alpha * (1.0 - P)
 + (1.0 - alpha) * (1 - (X_subset.shape[1] /
total_features)))
 return j

Optimization Naive Bayes Classifier On Sentiment Analysis Of Hotel Reviews (Siti Khomsah)

163

Figure 3. Particle Generating Function

Figure 4. Main Function

Model Evaluation

The accuracy of the Naive Bayes classification is

viewed from data comparison predicted correctly by

the MNB to the overall data in particles (Figure 2).

Meanwhile, the optimized performance of Naive

Bayes is shown by the variable j. The accuracy of the

Naive Bayes Classifier which is optimized by PSO is

indicated by the final value of the objective function.

RESULTS AND DISCUSSION

The analysis sentiment classification model

used is the Multinomial Naive Bayes Classifier

(NBC) algorithm. For the first step, each token (term)

is converted into a numeric vector using TF-IDF.

From the TF-IDF calculation, the dimensions are

2,994 features. After obtaining the features with TF-

ID, the classification process is continued with

Multinomial NBC. Each NBC classification result is

optimized with Particle Swarm Optimization (PSO).

The PSO parameters used in the experiment are

shown in Table 2.

Table 2 Experiment Parameter Setting

Parameter Value

c1 = individual intelligence

learning rate
1

c2 = social intelligence learning

rate
2

w = inertia weight equation (7)

k = number of neighbors 3

p = distance calculation option 2 (Euclidean)

number of particles
10; 20; 30;

40; 50

number of iterations 100 dan 500

The components c1 and c2 are given constant

values. Small constant value of under one will speed

up the rate but sometimes decrease accuracy. The

small number of k is expected to produce a good

neighborhood relationship. Large amounts of k will

usually slow down the process. The number of

particles was tested using 10 to 50 particles, and each

with 100 and 500 iterations. If 10 particles are

generated, there will be 10 generations, namely P1,

P2, P3, ..., P10. NBC make 10 times classification,

then average the accuracy. One P loop is called a

generation.

To prove that the PSO is working well for

NBC, two experiments are carried out. First, the NBC

model is built with the TF-IDF feature selection. The

Function for generating a bunch of particles
in each iteration
def f(x, alpha=0.88):
 x: numpy.ndarray of shape (n_particles,
dimensions)
 n_particles = x.shape[0]
 j = [f_per_particle(x[i], alpha) for i in
range(n_particles)]
 return np.array(j)
#m is array (particle dimension).
#alpha is constant weight for trade-off classifier
performance and number of features.

#Main Function PSO
import matplotlib.pyplot as plt
import random
w=0.5+random.uniform(-1,1)/2
jumpartikel=10
iters=100

 # Initial parameters PSO
options = {'c1': , 'c2': , 'w':, 'k':, 'p':}
#c1 = individual intelligence learning rate
#c2 = Social intelligence learning rate
#w = inertia weight
#k = number of neighbors
#p = distance calculation (2=euclidean)

particleScore = list()
particleSize = list()

sepecify the dimensions of features (features
of word that produced by stemming)

dimensions = X.shape[1]

Create Object PSO named optimizer

optimizer =
ps.discrete.BinaryPSO(n_particles=jumpartikel,
dimensions=dimensions, options=options)

 # Performance optimizer
cost, pos = optimizer.optimize(f, iters=iters)

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

164

second model uses NBC in combination with PSO. In

the second model, the NBC method works on the

particles in the PSO. In the first model experiment, all

features and comment data are used. Seventy percent

(70%) serve as training data to build models and thirty

percent (30%) becomes testing data. The accuracy of

the PSO + NBC model is shown in Table 3.

Table 3 NBC +TF-IDF model performance

Model Accuracy

NBC+ TF-IDF 76%

In the NBC optimization model, the experiment is

repeated 10 times (10 variations of particles). The

results for each particle and iteration are shown in

Table 4.

Table 4 PSO-NBC Model Performance

Number

of

iterations

Number

of

particles

Accuracy

PSO-NBC

(%)

Inertia

weight(w)

100 10 89.93 0.399

20 90.38 0.345

30 90.73 0.414

40 90.80 0.752

50 91.76 0.980

500 10 90.50 0.679

20 90.50 0.217

30 91.18 0.535

40 90.50 0.130

50 90.80 0.396

In an experiment with 100 iterations (Table

4), the accuracy in the initial generation of particle 10,

the accuracy has reached 89.93%. This figure actually

exceeds the accuracy of NBC without PSO. With the

increase in the number of particles from 20, 30, to 40,

convergent accuracy is achieved at the value of 90%.

The increase in accuracy occurs when 50 particles are

used. In the inertia weight column, it can be seen that

the greater the weight value, the greater the accuracy.

Meanwhile, the experiment with 500

iterations yields different result. Early generation

accuracy, with 10 convergence particles is at 90.50%.

However, in contrast to the first experiment (with 100

iterations), the increase in the number of particles is

not accompanied by an increase in accuracy. Inertia

weight is reduced when the number of iterations is

500. With 500 iterations, the higher the number of

particles, the smaller the weight change. However,

when using 30 particles, it appears that the accuracy

increases with inertia weight better than that with 20

particles. This may happen because of the way PSO

generates particles randomly. The random generation

of particles does not guarantee that the selected data

is good to support optimal accuracy.

The PSO performance rates for NBC

optimization are shown in Figure 5, Figure 6, Figure

7, Figure 8. The red line in Figure 5,6,7,8 shows the

peak mean accuracy of all particles in each

generation. Figure 5 shows that the use of 10 particles

will achieve the first accuracy at about the 50th

iteration but then decrease and reach the highest

average accuracy at the 99th iteration.

Optimization Naive Bayes Classifier On Sentiment Analysis Of Hotel Reviews (Siti Khomsah)

165

Figure 5. Accuracy Rate With 10 Particles and 100 Iterations

Figure 6. Accuracy Rate With 50 Particles and 100 Iterations

Figure 6 shows the use of 50 particles under

the similar conditions as that with 10 particles. In

Figure 5 and Figure 6, the convergence of accuracy

did not occur consistently despite increase of

accuracy.

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

166

Figure 7. Accuracy Rate With 10 Particles and 500 Iterations

Figure 8. Accuracy Rate With 50 Particles and 500 Iterations

Figure 6 and Figure 7 show the rate of change in the

accuracy of each particle. In the early days of flying

particles (the first generation), accuracy was seen at

90%. Although the number of particles increases,

accuracy does not increase. Usually, a high number

of iterations requires high computation time.

However, in this study, the computation time is not

calculated because the computation time is very

relative, depending on the hardware used.

Optimization Naive Bayes Classifier On Sentiment Analysis Of Hotel Reviews (Siti Khomsah)

167

CONCLUSIONS
1. Conclusion

From the experiments and datasets carried out

and used in this study, it is proven that Particle Swarm

Optimization has been successful in optimizing the

Naive Bayes Classifier, achieving the smallest

accuracy of 89.93% and the maximum accuracy of

91.76%.

Text analysis yields a large feature dimension. The

increase in accuracy of Naive Bayes from 76% to

89.93-91.76% indicates that PSO can solve the

problem space of text analysis with certain

parameters. The parameter setting significantly

affects the convergence rate of accuracy. The use of a

smaller number of particles can achieve optimal

accuracy (89.93%). Larger number of particles can

generate more optimal accuracy, with the highest at

91.76%. However, the combination of the number of

iterations and the number of particles is equally large,

unable to increase accuracy. The right inertia weight

can improve accuracy. The number of particles 20-30

has reached optimal accuracy.

2. Recommendation

It is necessary that PSO performance for

feature optimization in sentiment analysis be tested

on various types of datasets, across domains, and

various parameters. In the sentiment analysis problem

space, the selection of the right number of particles,

the number of iterations, and the value of the inertia

weight component still require further investigation.

ACKNOWLEDGEMENT

The research team would like to thank

colleagues at the Infomatics Engineering Study

Program of the Purwokerto Telkom Institute of

Technology. The research team would like to thank

Mr. Agus Sasmito Aribowo, S.Kom., M.Cs as a

researcher in the field of sentiment analysis, who has

provided an initial criticism and review of the writing

of the results of this study, and Elin Hanjani

Paramitha who has been willing to share the dataset

to complete this study.

REFERENCES

Cahyana, N., Khomsah, S., & Aribowo, A. S. (2019).

Improving Imbalanced Dataset Classification

Using Oversampling and Gradient Boosting.

Proceeding - 2019 5th International Conference

on Science in Information Technology:

Embracing Industry 4.0: Towards Innovation in

Cyber Physical System, ICSITech 2019, 217–

222.

https://doi.org/10.1109/ICSITech46713.2019.8

987499

Eberhart, R., & Kennedy, J. (1995). New optimizer

using particle swarm theory. Proceedings of the

International Symposium on Micro Machine

and Human Science, 39–43.

https://doi.org/10.1109/mhs.1995.494215

Elin Hanjani Pramitha. (2020). Sentiment Analysis

Komentar Pelanggan Hotel Di Purwokerto

Menggunakan Naive Bayes Classifier.

Feng, G., Guo, J., Jing, B. Y., & Sun, T. (2015).

Feature subset selection using naive Bayes for

text classification. Pattern Recognition Letters,

65, 109–115.

https://doi.org/10.1016/j.patrec.2015.07.028

Hu, X., Eberhart, R. C., & Shi, Y. (2003).

Engineering optimization with particle swarm.

2003 IEEE Swarm Intelligence Symposium, SIS

2003 - Proceedings, 53–57.

https://doi.org/10.1109/SIS.2003.1202247

Khomsah, S., & Aribowo, A. S. (2020). Model Text-

Preprocessing Komentar Youtube Dalam

Bahasa Indonesia. Rekayasa Sistem Dan

Teknologi Informasi, RESTI, 4(10), 648–654.

https://doi.org/10.29207/resti.v4i4.2035

Naive Bayes. (n.d.). https://scikit-

learn.org/stable/modules/naive_bayes.html

Osman, S. E., & Zarog, M. (2019). Optimized V-

Shaped Beam Micro-Electrothermal Actuator

Using Particle Swarm Optimization (PSO)

Technique. Micro and Nanosystems, 11(1), 62–

67.

Jurnal Penelitian Pos dan Informatika, Vol. 10 No. 2 Desember 2020: page 157- 168

168

https://doi.org/10.2174/1876402911666190208

162346

Pandhu Wijaya, A., & Agus Santoso, H. (2018).

Improving the Accuracy of Naïve Bayes

Algorithm for Hoax Classification Using

Particle Swarm Optimization. Proceedings -

2018 International Seminar on Application for

Technology of Information and

Communication: Creative Technology for

Human Life, ISemantic 2018, 482–487.

https://doi.org/10.1109/ISEMANTIC.2018.854

9700

Pramono, F., Didi Rosiyadi, & Windu Gata. (2019).

Integrasi N-gram, Information Gain, Particle

Swarm Optimation di Naïve Bayes untuk

Optimasi Sentimen Google Classroom. Jurnal

RESTI (Rekayasa Sistem Dan Teknologi

Informasi), 3(3), 383–388.

https://doi.org/10.29207/resti.v3i3.1119

Rasjid, Z. E., & Setiawan, R. (2017). Performance

Comparison and Optimization of Text

Document Classification using k-NN and Naïve

Bayes Classification Techniques. Procedia

Computer Science, 116, 107–112.

https://doi.org/10.1016/j.procs.2017.10.017

Rizaldy, A., & Santoso, H. A. (2017). Performance

improvement of support vector machine (SVM)

With information gain on categorization of

Indonesian news documents. Proceedings -

2017 International Seminar on Application for

Technology of Information and

Communication: Empowering Technology for a

Better Human Life, ISemantic 2017, 2018-

January, 227–231.

https://doi.org/10.1109/ISEMANTIC.2017.825

1874

Salton, G., & Buckley, C. (1988). Term-Weighting

Approaches in Automatic Text Retrieval.

Information Processing & Management, 24(5),

513–523.

https://doi.org/https://doi.org/10.1016/0306-

4573(88)90021-0

Suyanto;, Arifianto, A., Rismala, R., & Sunyoto, A.

(2020). Evolutionary Machine Learning (Edisi

1). Informatika.

Wardhani, N. K., Rezkiani, Kurniawan, S., Setiawan,

H., Gata, G., Tohari, S., Gata, W., & Wahyudi,

M. (2018). Sentiment analysis article news

coordinator minister of maritime affairs using

algorithm naive bayes and support vector

machine with particle swarm optimization.

Journal of Theoretical and Applied Information

Technology, 96(24), 8365–8378.

Xiang, Z., Schwartz, Z., Gerdes, J. H., & Uysal, M.

(2015). What can big data and text analytics tell

us about hotel guest experience and

satisfaction? International Journal of

Hospitality Management, 44, 120–130.

https://doi.org/10.1016/j.ijhm.2014.10.013

Xie, K., & Zhang, J. (2014). The Business Value of

Online Consumer Reviews and Management

Response to Hotel Performance. International

Journal of Hospitality Management,

43(October 2017), 1–12.

https://doi.org/10.1016/j.ijhm.2014.07.007

Yan, Y., Zhang, R., Wang, J., & Li, J. (2018).

Modified PSO algorithms with “Request and

Reset” for leak source localization using

multiple robots. Neurocomputing, 292, 82–90.

https://doi.org/10.1016/j.neucom.2018.02.078

