Online Realtime Sentiment Analysis Tweets by Utilizing Streaming API Features From Twitter

Authors

  • Nfn Bahrawi BBPSDMP Kominfo Makassar

DOI:

https://doi.org/10.17933/jppi.2019.090105

Keywords:

sentiment analysis, twitter, opinion mining, text mining

Abstract

Twitter is one of the social media that has a simple and fast concept, because short messages, news or information on Twitter can be more easily digested. This social media is also widely used as an object for researchers or industry to conduct sentiment analysis in the fields of social, economic, political or other fields. Opinion mining or also commonly called sentiment analysis is the process of analyzing text to get certain information in a sentence in the form of opinion. Sentiment analysis is one of the branches of the science of Text mining where text mining is a natural language processing technique and analytical method that is applied to text data to obtain relevant information. Public opinion or sentiment in social media twitter is very dynamic and fast changing, a real time sentiment analysis system is needed and it is automatically updated continuously so that changes can always be monitored, anytime and anywhere. This research builds a system so that it can analyze sentiment from twitter social media in realtime and automatically continuously. The results of the system trial succeeded in drawing data, conducting sentiment analysis and displaying it in graphical and web-based realtime and updated automatically. Furthermore, this research will be developed with a focus on the accuracy of the algorithms used in conducting the sentiment analysis process.

References

Hardinata, R. (Mei 2018). Ekstraksi Pola Penggunaan Sosial Media Organisasi Keagamaan Menggunakan Metode Word Frequency dan Sentiment Analysis. Jurnal ICT Akademi Telkom Jakarta, 26-34.

Hutto, C. &. (June 2014). VADER: A Parsimonious Rule-based Model for Sentiment Analysis of Social Media Text. . Eighth International Conference on Weblogs and Social Media (ICWSM-14). Ann Arbor: MI.

Ira Zulfa, E. W. (2017). Sentimen Analisis Tweet Berbahasa Indonesia dengan Deep Belief Network. IJCCS Vol.11, No.2, July, 187~198.

Liu, B. (May 2012). Sentiment Analysis and Opinion Mining. Morgan & Claypool Publishers.

Moujahid, A. (2014, July 21). An Introduction to Text Mining using Twitter Streaming API and Python. Retrieved from http://adilmoujahid.com: http://adilmoujahid.com/posts/2014/07/twitter-analytics/

Muhammad Akbar Maulana, A. S. (2018). Analisis Sentimen Media Sosial Universitas Amikom Yogyakarta Sebagai Sarana Penyebaran Informasi Menggunakan Algoritma Klasifikasi SVM. Seminar Nasional Teknologi Informasi dan Multimedia 2018 (pp. 1.2-7~ 1.2-12). Yogyakarta: UNIVERSITAS AMIKOM.

Muljono, D. P. (2018). Analisa Sentimen Untuk Penilaian Pelayanan Situs Belanja Online Menggunakan Algoritma Naïve Bayes. Konferensi Nasional Sistem Informasi 2018 (pp. 165-170). Pangkalpinang: STMIK Atma Luhur.

Python Software Foundation. (2019, Mar 6). Python Documentation contents. Retrieved from Python Documentation: https://docs.python.org/3/contents.html

Refan Andros, L. (2014). Implementasi Honeypot Dengan Raspberry Pi Sebagai Alat Bantu Pendeteksi Kemanan Jaringan dan Penangkap Malware. Jurnal Teknik dan Ilmu Komputer, 12-26.

Sarworsi, A. H. (2009). Aplikasi Web Crawler Untuk Web Konten Pada Mobile Phone. JUTI Vol.7 No.3, 127-134.

Sotiris K. Tasoulis, Aristidis G. Vrahatis, Spiros V. Georgakopoulos,Vassilis P. Plagianakos. (2018). Real Time Sentiment Change Detection of Twitter Data Streams. 2018 Innovations in Intelligent Systems and Applications (INISTA) (pp. 1-6). Thessaloniki, Greece: IEEE.

Downloads

Published

2019-10-01

Issue

Section

Informatics