ANALISIS KINERJA PEGAWAI PUSBINDIKLAT PENELITI LIPI BERDASARKAN POLA PEMANFAATAN INTERNET MELALUI PENDEKATAN WEB USAGE MINING
Main Article Content
Abstract
Abstract
Measurement of employee performance in the use of internet services can be conducted as part of employee’s performance target. Web usage mining approach through observation of internet access records stored in the proxy server can be applied in understanding user behavior. This study aims to obtain an overview of employee behavior in utilizing internet services in Pusbindiklat Peneliti LIPI, measure the level of employee productivity based on the length of time access to sites that do not support the work and map the category of sites accessed to the task dutyof employee. K-Means clustering algorithm is used to group user access patterns. The data used are proxy server logs and employee’s performance target in Pusbindiklat Peneliti LIPI in period of August-December 2016. The results shows that the pattern of Internet use by employees Pusbindiklat Peneliti LIPI do not fully support the job function. About 83% of employees use the internet to access sites do not support jobs at low level access (ranging from 0-4 hours per week). Based on these results, it can be concluded that the behavior of internet use by employees of Pusbindiklat Peneliti LIPI does not affect their productivity significantly.
Keywords: clustering, K-Means, log proxy server, performance of employees, web usage mining
Article Details
JPPI provides immediate open access to its content on the principle that making research freely available to the public to supports a greater global exchange of knowledge.
JPPI by MCIT/Kemenkominfo is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://kominfo.go.id/.
References
Cadez, I., Heckerman, D., Meek, C., Smyth, P., & White, S. (2003). Model-Based Clustering and Visualization of Navigation Patterns on aWeb Site. Data Mining and Knowledge Discovery, 7, 399–424.
Chitraa, V., & Davamani, A. S. (2010). A Survey on Preprocessing Methods for Web Usage Data. International Journal of Computer Science and Information Security, 7(3), 78–83. https://doi.org/10.2200/S00191ED1V01Y200904ICR006
Chitraa, V., & Thanamani, A. S. (2012). An Enhanced Clustering Technique for Web Usage Mining. International Journal of Engineering Research & Technology (IJERT), 1(4), 1–5.
Coker, B. L. S. (2011). Freedom to surf: The positive effects of workplace Internet leisure browsing. New Technology, Work and Employment, 26(3), 238–247. https://doi.org/10.1111/j.1468-005X.2011.00272.x
Dong, D. (2009). Exploration on Web Usage Mining and Its Application. Analysis, 1–4. https://doi.org/10.1109/IWISA.2009.5072860
Fathonah, N., & Hartijasti, Y. (2014). the Influence of Perceived Organizational Injustice Towards Workplace Personal Web Usage and Work Productivity in Indonesia. South East Asian Journal of Management, 8(2), 151–166.
Kerkhofs, J., Vanhoof, K., & Pannemans, D. (2001). Web usage mining on proxy servers: a case study. Proceedings of Data Mining for Marketing Applications Workshop at ECML/PKDD 2001, September 3-7 2001, Freiburg (Germany).
Kim, S. J., & Byrne, S. (2011). Conceptualizing personal web usage in work contexts: A preliminary framework. Computers in Human Behavior, 27(6), 2271–2283. https://doi.org/10.1016/j.chb.2011.07.006
Lüderitz, S. (2006). Pre-processing of webserver logs for data mining. Berlin. Diakses dari https://people.cs.kuleuven.be/~bettina.berendt/teaching/2007w/adb/Lecture/OtherSlides/luederitz-presentation1-slides_2006_07_10.pdf tanggal 15 September 2016
Nithya, P., & Sumathi, P. (2012). Novel Pre-Processing Technique for Web Log Mining by Removing Global Noise , Cookies and Web Robots. International Journal of Computer Applications, 53(17), 1–6.
Pamutha, T., Chimphlee, S., Kimpan, C., & Sanguansat, P. (2012). Data Preprocessing on Web Server Log Files for Mining Users Access Patterns. International Journal of Research and Reviews in Wireless Communications (IJRRWC), 2(2), 92–98.
Roiha, N. U. (2017). Segmentasi Pengguna Web Menggunakan Metode Genetic K-Means Algorithm. Tesis. Institut Teknologi Sepuluh November.
Weinreich, H., Obendorf, H., & Herder, E. (2006). Data cleaning methods for client and proxy logs. Workshop on Logging Traces of Web Activity: The Mechanics of Data Collection; 2006 Mei 23; Edinburgh (GB): Dalhousie University.
Xu, J., & Liu, H. (2010). Web User Clustering Analysis Based on K-means Algorithm. Proceedings of the International Conference on Information Networking and Automation (ICINA), 2, V2-6-V2-9. https://doi.org/10.1109/ICINA.2010.5636772
Yusriani, E., & K. Suprapto, Y. (2016). Pemodelan Prediksi Pola Akses Website Pemerintah menggunakan Classification via Regression. Jurnal Masyarakat Telematika Dan Informasi, 7(1), 1–12.
Zhang, Y., Dai, L., & Zhou, Z.-J. (2010). A New Perspective of Web Usage Mining: Using Enterprise Proxy Log. 2010 International Conference on Web Information Systems and Mining, 38–42. https://doi.org/10.1109/WISM.2010.20
Zubi, Z. S., Saleh, M., & Raiani, E. (2014). Using Web Logs Dataset via Web Mining for User Behavior Understanding. International Journal of Computers and Communications, 8, 103–111.